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Abstract

The task of aspect and opinion terms co-extraction aims to
explicitly extract aspect terms describing features of an entity
and opinion terms expressing emotions from user-generated
texts. To achieve this task, one effective approach is to exploit
relations between aspect terms and opinion terms by parsing
syntactic structure for each sentence. However, this approach
requires expensive effort for parsing and highly depends on
the quality of the parsing results. In this paper, we offer a
novel deep learning model, named coupled multi-layer atten-
tions. The proposed model provides an end-to-end solution
and does not require any parsers or other linguistic resources
for preprocessing. Specifically, the proposed model is a multi-
layer attention network, where each layer consists of a couple
of attentions with tensor operators. One attention is for ex-
tracting aspect terms, while the other is for extracting opinion
terms. They are learned interactively to dually propagate in-
formation between aspect terms and opinion terms. Through
multiple layers, the model can further exploit indirect rela-
tions between terms for more precise information extraction.
Experimental results on three benchmark datasets in SemEval
Challenge 2014 and 2015 show that our model achieves state-
of-the-art performances compared with several baselines.

Introduction
Aspect and opinion terms co-extraction, which aims at iden-
tifying aspect terms and opinion terms from texts, is an im-
portant task in fine-grained sentiment analysis (Pang and
Lee 2008). An aspect term refers to a word or a phrase (a
sequence of words) describing an attribute or feature of an
entity, e.g., a product. An opinion term refers to the expres-
sion carrying subjective emotions. For example, in the re-
view “This little place has a cute interior decor and afford-
able prices”, interior decor and prices are aspects, with cute
and affordable as their corresponding opinions.

In the literature, there exist many lines of work for as-
pect and/or opinion terms extraction which can be cate-
gorized as rule-based, feature-engineering-based, or deep-
learning-based approaches. For rule-based approaches (Hu
and Liu 2004a; 2004b; Qiu et al. 2011), the idea is to
manually design some rules based on syntactic or depen-
dency structure of each sentence to expand the extracted
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aspect and opinion terms iteratively with a seed collec-
tion as input. For feature-engineering-based approaches, the
idea is to train a classifier with rich, manual-defined fea-
tures based on linguistic or syntactic information from an-
notated corpus to predict a label (aspect, opinion, or oth-
ers) on each token in a sentence (Jin and Ho 2009; Li et
al. 2010). These two categories of approaches are labor-
intensive for constructing rules or features using linguistic
and syntactic information. To reduce the engineering effort,
deep-learning-based approaches (Liu, Joty, and Meng 2015;
Yin et al. 2016; Wang et al. 2016) are proposed to learn high-
level representations for each token, on which a classifier
can be trained. Despite some promising results, most deep-
learning approaches still require a parser analyzing the syn-
tactic/dependency structure of the sentence to be encoded
into the deep models. Therefore, the performances of these
approaches rely on the quality of the parsing results.

In practice, the syntactic or dependency structures of
many user-generated texts may not be precise with a com-
putational parser, which may degrade the performances of
existing deep-learning approaches. Moreover, performing
parsing on a long sentence and large dataset can be very
time-consuming. Therefore, we propose to use the atten-
tion mechanism (Bahdanau, Cho, and Bengio 2014) with
tensor operators to replace the role of syntactic/dependency
parsers to capture the relations among tokens in a sentence.
Specifically, we design a couple of attentions, one for as-
pects extraction and the other for opinions extraction. They
are learned interactively such that label information can be
dually propagated among aspect terms and opinion terms by
exploiting their relations. Moreover, we use multiple lay-
ers of the coupled attentions to extract inconspicuous as-
pect/opinion terms. Our motivation is similar to (Qiu et al.
2011; Wang et al. 2016) for exploiting aspect-opinion rela-
tions. The difference is that our model automatically learns
these relations without any parsers or linguistic resources.

In summary, our contributions are two-fold: 1) We pro-
pose an end-to-end deep learning model for aspect and
opinion terms co-extraction without requiring any syntac-
tic/dependency parsers or linguistic resources to generate
additional information as input. 2) We conduct extensive
experiments on three benchmark datasets to verify that our
model achieves state-of-the-art performance for aspect and
opinion terms co-extraction.



Related Work
Aspect and Opinion Terms Extraction
For extracting aspect/opinion terms from texts, Hu and
Liu (2004a) proposed to use association rule mining for ex-
tracting aspect terms and synonyms/antonyms from Word-
Net for identifying opinion terms. Qiu et al. (2011) used
a dependency parser to augment a seed collection of as-
pect and opinion terms through double-propagation, similar
for (Popescu and Etzioni 2005; Wu et al. 2009). The above
methods are unsupervised, but depend on pre-defined rules
and linguistic resources. For supervised methods, the task
is treated as a sequence labeling problem. Li et al. (2010)
and Jin and Ho (2009) implemented CRF and HMM with
extensive human-designed features to solve the problem, re-
spectively. Liu et al. (2012; 2013) applied a word align-
ment model in order to capture relations among opinion
words, which requires large amount of training data to ob-
tain desired relations. Topic models were also applied for
aspect extraction (Chen, Mukherjee, and Liu 2014; Zhao et
al. 2010). Recently, deep learning methods have been pro-
posed for this task. Liu et al. (2015) applied recurrent neu-
ral network on top of pre-trained word embeddings for as-
pect extraction. Yin et al. (2016) proposed an unsupervised
embedding method to encode dependency path into a recur-
rent neural network to learn high-level features for words,
which are taken as input features for CRFs for aspect ex-
traction. Wang et al. (2016) proposed a joint model of recur-
sive neural networks and CRFs for aspect and opinion terms
co-extraction. The neural network is constructed from the
dependency parse tree to capture dual-propagation among
aspect and opinion terms. Note that most existing deep mod-
els require a syntactic/denpendency parser and auxiliary lin-
guistic features to boost their extraction accuracy. As a com-
parison, our proposed model does not need any linguistic
features, or any pre-constructed syntactic structure as input.

Attention & Memory Network
Attentions (Mnih et al. 2014) and memory networks (We-
ston, Chopra, and Bordes 2015) have recently been used
for various machine learning tasks, including image gener-
ation (Gregor et al. 2015), machine translation (Bahdanau,
Cho, and Bengio 2014), sentence summarization (Rush,
Chopra, and Weston 2015), document sentiment classifica-
tion (Yang et al. 2016), and question answering (Hermann et
al. 2015). The attention mechanism aims to select and attend
to relevant parts of the input which could be thought of as a
soft-alignment process. A memory network generally con-
sists of multiple layers of attentions, which has shown su-
perior performance in many NLP tasks (Kumar et al. 2016;
Sukhbaatar et al. 2015). In this paper, we aim to develop a
multi-layer attention network to replace the role of a syntac-
tic/dependency parser to capture the relations among words
in a sentence for information extraction.

Problem Statement & Motivation
We denote by si a review sentence from the training dataset,
which consists of a sequence of tokens si={wi1, ..., wini

}.
The task aims to extract a collection of all the explicit

aspect terms Ai = {ai1, ..., aij} and opinion terms Pi =
{pi1, ..., pim} appearing in si. Note that ail or pir could
be a single word or a phrase. The task is modeled as a se-
quence tagging problem with the BIO encoding scheme.
Specifically, we define 5 different classes: BA (beginning
of aspect), IA (inside of aspect), BP (beginning of opin-
ion), IP (inside of opinion), and O (others), and let L =
{BA, IA,BP, IP,O}. Each token wip ∈ si is classified as
yip ∈L. Given a test review sj = {wj1, ..., wjnj

}, we aim
to obtain a prediction label yjq ∈L for each wjq , where any
prediction sequence with BA (BP) at the beginning followed
by IA (IP) is extracted as a single aspect (opinion) term.

To fully exploit the syntactic relations among different to-
kens in a sentence, most existing methods applied a com-
putational parser to analyze the syntactic/dependency struc-
ture of each sentence in advance. Figure 1 shows an exam-
ple dependency structure of a review sentence. In this ex-
ample, fish burger and tastes are ground truth aspect terms,
accompanied with best and fresh as their opinions respec-
tively. In (Qiu et al. 2011), several extraction rules are prede-
fined based on the dependency structure. For instance, given
tastes as an aspect term, fresh could be extracted as an opin-
ion term through the direct relation:A

xcomp−−−−→B. As another
example, given burger as an aspect term, tastes can be ex-
tracted as another aspect term through the indirection rela-

tion: A
nsubj−−−−→ C

acl←−− B because they both have syntactic
dependence on the same token dish. One major limitation
of this rule-based approach is that it is deterministic, and
thus may fail to handle uncertainty underlying the data. To
address this issue, Wang et al. (2016) proposed to encode
the dependency structure into a recursive neural network
plugged with a CRF to construct syntactically meaningful
and discriminative hidden representations.

Although promising results were shown in (Wang et al.
2016), a dependency parser is still required as a prepro-
cessing step, and some simple feature engineering is also
needed to boost its performance. However, there may be
many grammar and syntactic errors in user-generated texts,
in which case the outputs of a dependency parser may
not be precise, and thus degrades the performance. There-
fore, in this paper, we offer an end-to-end deep learning
model, which models the relations among tokens automat-
ically without any dependency parsing or feature engineer-
ing, and achieves state-of-the-art performances for aspect
and opinion terms co-extraction.

Coupled Multi-layer Attentions
Our proposed model is named Coupled Multi-layer Atten-
tions (CMLA) which consists of the following features:
• For each sentence, we construct a pair of attentions, one

for aspect terms extraction, and the other for opinion
terms extraction. Each attention aims to learn a prototype
vector for aspect or opinion, a high-level feature vector
for each token, and an attention score for each token in the
sentence. The feature vector and attention score measure
the extent of correlation between each input token and the
prototype using a tensor operator, which captures differ-
ent contexts of a given token when measuring its corre-



Figure 1: A dependency example for sentiment analysis.

lation to the prototype. Hence, a token with high score
indicates a high chance of being an aspect or opinion.

• To capture direct relations between aspect and opinion
terms, e.g., the A

xcomp−−−−→ B relation shown in Figure 1,
the pair of attentions are coupled in learning such that the
learning of each attention is affected by the other. This
helps to double-propagate information between them.

• To further capture indirect relations among aspect and

opinion terms, e.g., the A
nsubj−−−−→C

acl←−−B relation shown
in Figure 1, we construct a network with multiple layers
of coupled attentions.

Attention with Tensor Operator
A basic unit of CMLA is a pair of attentions: aspect attention
and opinion attention. In most previous studies, attentions
have been used for generating sentence- or document- level
representation by computing a weighted sum of the input
sequence (Bahdanau, Cho, and Bengio 2014). The weight
of each input unit is an attention score obtained from its
composition with a prototype vector which guides the model
about where to attend. Different from previous approaches,
we use attention to identify the possibility of each token be-
ing an aspect or opinion term. Figure 2(a) shows an example
of a basic attention model for aspect extraction. We denote
by H={h1, ..., hn} the input sequence of length n, where
hi∈Rd is the feature representation for the i-th token wi.1

In the aspect attention, we first generate a prototype vec-
tor ua for aspects which can be viewed as a general feature
representation for aspect terms. This aspect prototype will
guide the model to attend to the most relevant tokens.2 Given
ua andH , the model scans the input sequence and computes
an attention vector rai and an attention score eai for the i-th
token. To obtain rai , we first compute a composition vector
βa
i ∈RK that encodes the extent of correlations between hi

and prototype vector ua through a tensor operator fa:

βa
i = fa(hi, u

a) = tanh(h>i G
aua), (1)

where Ga∈RK×d×d is a 3-dimensional tensor. Motivated
by (Socher et al. 2013), a tensor operator could be viewed

1For initialization of hi, we first pre-train a word embedding
xi ∈RD (Mikolov et al. 2013) for wi, and then apply Gated Re-
current Unit (GRU) (Cho et al. 2014) to obtain hi by encoding
context information.

2We randomly initialize ua from a uniform distribution: ua ∼
U [−0.2, 0.2] ∈ Rd, which is then trained and updated iteratively.

as multiple bilinear terms that could model more compli-
cated compositions between 2 units. As shown in the bot-
tom of Figure 2(a), Ga could be decomposed into K slices,
where each slice Ga

k∈Rd×d is a bilinear term that interacts
with 2 vectors and captures one type of composition, e.g., a
specific syntactic relation. Hence h>i G

aua∈RK inherits K
different kinds of compositions between hi and ua that indi-
cates complicated correlations between each input token and
the aspect prototype. By adding a non-linear transformation
tanh(·), βa

i encodes more abstract and high-level correlation
features. Then rai is obtained from βa

i via a GRU network:
rai = (1− zai )� rai−1 + zai � r̃ai , (2)

where gai =σ(W
a
g r

a
i−1 +Ua

g β
a
i ), z

a
i =σ(W

a
z r

a
i−1 +Ua

z β
a
i ),

and r̃ai = tanh(W a
r (g

a
i � rai−1) + Ua

r β
a
i ). Here, gai and zai

are reset and update gates respectively that control the in-
formation flow from the previous timestamp. W a

g , Ua
g , W a

z
and Ua

z are weight matrices to be learned for transforming
rai−1 and βa

i to gate units. By applying GRU on βa
i , the at-

tention vector rai∈RK becomes context-dependent with the
ability to inherit past information. For example, as shown in
Figure 2(a), if Fish has high correlations with aspect pro-
totype, its next token burger also has high chance of be-
ing active, because ra2 inherits information from ra1 . Indeed,
many aspect terms consist of multiple tokens, and exploit-
ing context information helps their predictions. For simplic-
ity, we use rai =GRU(fa(hi, u

a), θa) to denote (2), where
θa={W a

g , U
a
g ,W

a
z , U

a
z ,W

a
r , U

a
r }.

An attention score eai for token wi is then computed as

eai = va>rai . (3)
Since rai is a correlation feature vector, va ∈ RK can be
deemed as a weight vector that weighs each feature accord-
ingly. Hence, eai becomes a scalar score, where a higher
score indicates higher correlation with the prototype, and
higher chance of being attended. For example, as shown
in Figure 2(a), ua helps the model to attend to Fish and
burger which indicates their high chance of being aspect
terms. Note that the output attention vector rai is also used as
the final feature representation for wi. Thus, a prediction on
each token can be generated by lai =softmax(Carai ), where
Ca ∈ Rc×K is a classification matrix for converting final
feature vectors to labels, and c is the number of classes.3

The procedure for opinion attention is similar. In the sub-
sequent sections, we use a superscript p to denote the opin-
ion attention. In the final prediction, each token only belongs
to 1 of the 5 classes in L mentioned previously. After lai and
lpi are obtained for each token, we pick the largest value from
each vector. If both of them correspond to O, then the final
prediction is O. If only one of them is O, we pick the other
one as final prediction. When neither of them are O, the two
values are compared and the largest one is chosen.

Coupled Attentions for Dual Propagation
As discussed in previous sections, a crucial issue for co-
extraction of aspect and opinion terms is how to fully ex-
ploit the relations between aspect terms and opinion terms

3Here, c=3. Classes in the aspect attention are BA, IA and O,
while classes in the opinion attention are BP , IP and O.



(a) A single-layer attention model with tensor. (b) Multi-layer Coupled attentions. (c) Attention prototype.

Figure 2: Illustration of the proposed model.

such that the information can be propagated to each other
to assist final predictions. However, independent learning of
the aspect or opinion attention fails to utilize their relations.
Therefore, we propose to couple the learning of the two at-
tentions such that information of each attention can be du-
ally propagated to the other. Specifically, as shown in Fig-
ure 2(b), solid lines and dashed lines denote aspect attention
and opinion attention, respectively. The two attentions share
the same feature vector hi for each input token wi. Different
from a single attention, the prototype to be fed into each at-
tention module becomes a pair of vectors {ua, up}, and the
tensor operator in (1) becomes a pair of tensors {Gm, Dm}:

fm(hi, u
a, up) = tanh([h>i G

mum : h>i D
mum]), (4)

where [:] denotes concatenation of vectors, andm∈{a, p} is
the index of the two attentions, m = a if m = p, and m = p
if m = a. The new tensor Dm ∈ RK×d×d is used to model
the correlations of hi with the prototype um from the conju-
gate attention, which captures the dual-propagation between
aspect terms and opinion terms. For example, if h8 for tastes
is already attended through the aspect attention and incorpo-
rated in ua, it will help to attend fresh for opinion attention
due to its strong correlation with tastes. This indicates fresh
as a possible opinion term. Similar to (2), the outputs rmi and
emi are obtained through

rmi = GRU(fm(hi, u
a, up), θm), and emi = vm>rmi . (5)

Multi-Layer Coupled Attentions
A couple of attentions is only able to capture the direct rela-
tions between aspect terms and opinion terms, but not the in-

direct relations among them, such as the A
nsubj−−−−→C

acl←−−B
relation shown in Figure 1. To address this issue, we pro-
pose a network with multi-layer coupled attentions. Specif-
ically, we present an example consisting of two layers in
Figure 2(b), where each layer consists of coupled attentions
as illustrated in the previous section. For each layer t + 1
as shown in Figure 2(c), the prototype vectors umt+1, where
m∈{a, p}, are updated based on the prototype vectors in the
previous layer umt to incorporate more feasible representa-
tions for aspect or opinion terms through

umt+1 = tanh(V mumt ) + omt , (6)

where V m ∈ Rd×d is a recurrent transformation matrix to
be learned, and omt is an accumulated vector computed via

omt =
n∑

i=1

αm
ti hi, and αm

ti = exp(emti )/

n∑
j

exp(emtj ), (7)

where αm
ti is a normalized attention score for emti . Intuitively,

omt is dominated by the input feature vectors {hi}’s with
higher attention scores. Therefore, omt will approach to the
attended feature vectors of aspect or opinion tokens. As a
result, umt+1 will capture more accurate feature representa-
tion about aspect or opinion terms, which in return is used
to guide the model about where to attend in the next layer.

We use Figure 2(b) to illustrate how the multi-layer cou-
pled attentions model can capture indirect relations, e.g., the

A
nsubj−−−−→C

acl←−−B relation. Suppose at layer t, uat incorpo-
rates h1 and h2 for Fish and burger, upt incorporates h5 for
best. For the aspect attention, {uat , upt } interact with each hi
to obtain the score eati. We see that dish is attended because
h6 is highly correlated with both h2 and h5. As a result, uat+1
will be updated, and incorporate h6, which in turn assists
focusing attention on tastes in the next layer, because of the
strong correlation between h6 and h8. In this case, the aspect
term tastes is extracted indirectly through two layers of the
coupled attentions. This shows that the multi-layer attention
network is able to progressively attend the aspect or opinion
words that are non-obvious and have indirect relations.

Similar to the single-layer coupled attention model, the
proposed network first accumulates high-level representa-
tions rmti in (5) for each token i at each layer t to gener-
ate the prediction vectors lmi = softmax(Cm

∑T
t=1 r

m
ti ), and

then outputs a final prediction for each token.

Experiments
Datasets & Experimental Setup
We evaluate and compare our proposed model on three
benchmark datasets, as described in Table 1. They are taken
from SemEval Challenge 2014 task 4 subtask 1 (Pontiki
et al. 2014) and SemEval Challenge 2015 task 12 subtask
1 (Pontiki et al. 2015). Note that the original datasets in the
challenges only contain labels for aspect terms. For S1 and



Dataset Description Training Test Total
S1 SemEval-14 Restaurant 3,041 800 3,841
S2 SemEval-14 Laptop 3,045 800 3,845
S3 SemEval-15 Restaurant 1,315 685 2,000

Table 1: Dataset description with number of sentences

S2, we use the labels on opinion terms provided by (Wang
et al. 2016), and manually label all the opinion terms for S3.

The pre-trained word embeddings are obtained using
the word2vec tool4 on two different corpora, as the three
datasets belong to two domains: restaurant and laptop. Fol-
lowing the setup in (Wang et al. 2016), for restaurant do-
main, we apply word2vec on Yelp Challenge dataset5 con-
sisting of 2.2M restaurant reviews with 54K vocabulary size.
For laptop domain, we use the corpus from electronic do-
main in Amazon reviews (McAuley et al. 2015), which con-
tains 1M reviews with 590K vocabulary size. The dimen-
sions of word embeddings are 200 for restaurant domain and
150 for laptop domain in our experiments.

For the input feature vectors to the attention network, we
convert the pre-trained word embeddings to hidden repre-
sentations through GRU implemented with the Theano li-
brary.6 The size of the hidden units for each layer is 50 for
all three datasets. We use a 2-layer attention network for ex-
periments. For each layer, the first dimension K of tensors
is set to be 20 for S1 and S3 (15 for S2).We use a fixed
learning rate for all experiments: 0.07 for S1, S3, and 0.1
for S2. To avoid overfitting, the network is regularized with
dropout. We follow the idea of (Zaremba, Sutskever, and
Vinyals 2014) which shows that partial dropout (only apply
dropout to non-recurrent parameters) is better than applying
dropout to all parameters for RNN. The dropout rate is set
to be 0.5 for non-recurrent parameters of GRU. Note that all
the above parameters are chosen through cross-validation.

Experimental Results
We compare CMLA with the following baseline models:
• DLIREC, IHS RD, EliXa: the top performing systems for

S1, S2 in SemEval Challenge 2014, and S3 in SemEval
Challenge 2015, respectively.

• LSTM: an LSTM network built on top of word embed-
dings proposed by (Liu, Joty, and Meng 2015). The set-
tings are the same as (Wang et al. 2016).

• WDEmb: the model proposed by (Yin et al. 2016) using
word and dependency path embeddings combined with
linear context embedding features, dependency context
embedding features as CRF input.7

• RNCRF: the joint model with CRF and recursive neural
network proposed by (Wang et al. 2016), which has been
shown to outperform CRFs with hand-crafted features.
4https://radimrehurek.com/gensim/models/word2vec.html
5http://www.yelp.com/dataset challenge
6http://deeplearning.net/software/theano/
7We report the original result from (Yin et al. 2016) as the

source code is not available.

S1 S2 S3
Model AS OP AS OP AS OP
DLIREC 84.01 - 73.78 - - -
IHS RD 79.62 - 74.55 - - -
EliXa - - - - 70.04 -
LSTM 81.15 80.22 72.73 74.98 64.30 66.43
WDEmb 84.31 - 74.68 - 69.12 -
WDEmb* 84.97 - 75.16 - 69.73 -
RNCRF 84.05 80.93 76.83 76.76 67.06 66.90
RNCRF* 84.93 84.11 78.42 79.44 67.74 67.62
CMLA 85.29 83.18 77.80 80.17 70.73 73.68

Table 2: Comparison results in terms of F1 scores. AS (OS)
refers to aspect (opinion) terms extraction.

• WDEmb*, RNCRF*: the corresponding models with ad-
ditional human-engineered linguistic features.
The comparison results in terms of F1 scores are shown

in Table 2. We report results for both aspect terms extrac-
tion (AS) and opinion terms extraction (OP) for all the three
datasets. To make fair comparisons, we use the same corpus
as in LSTM, RNCRF, RNCRF* for training word embed-
dings, and same training set with both aspect and opinion
labels. Among deep-learning-based models, the models that
combine neural network with CRF (i.e., WDEmb and RN-
CRF) perform better than LSTM because of the incorpora-
tion of dependency structure. It is clear that CMLA achieves
the state-of-the-art results for most of the time without any
pre-extracted linguistic/syntactic information. Specifically,
CMLA outperforms WDEmb by 0.98%, 3.12% and 1.61%,
and RNCRF by 1.24%, 0.97% and 3.67% for aspect extrac-
tion on S1, S2 and S3, respectively. Even compared with
the deep models with additional hand-crafted features, i.e.,
WDEmb* and RNCRF*, CMLA still gets 0.32%, 2.64% and
1.00% improvement over WDEmb* for aspect extraction on
S1, S2 and S3, and 0.36% and 2.99% increase over RNCRF*
for aspect extraction on S1 and S3, respectively. Moreover,
the improvements over RNCRF and RNCRF* are all sig-
nificant (p<0.01), except for the aspects extraction on S1
and S2 over RNCRF*. Note that besides linguistic features,
WDEmb* and RNCRF* also require dependency parsers to
perform the task. Therefore, CMLA is more effective and
simpler to implement.

To show the effect of the number of layers, we present ex-
perimental results varying the number of layers in Table 4.
The best results are obtained with 2 layers. With only one
layer, the results for aspect extraction are 0.39%, 0.52% and
1.46% inferior than the best scores on S1, S2 and S3, re-
spectively, but they are still comparable with other baselines
shown in Table 2. Similar observations can be found for the
results with 3 layers. This shows that CMLA with 2 layers is
enough to exploit most of the relations among input tokens.

We also conducted experiments to explicitly show the ad-
vantage of coupling the learning of aspect and opinion atten-
tions. The second part in Table 4 specifies different setups
of the model. ASL refers to the multi-layer network with
only aspect attention and is trained with aspect labels only.
We can see that even without opinion labels, the network
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Figure 3: Visualization of attention weights for different tokens within a sequence.

Prediction with CMLA Prediction with RNCRF
also stunning “colors” and speedy also stunning colors and speedy
Only 2 “usb ports” ... seems kind of limited Only 2 “usb ports” ... seems kind of limited
strong “build” though which really adds to its “durability” strong “build” though which really adds to its durability
Save room for “deserts” - they’re to die for Save room for “deserts” - they’re to die for
You must try “Odessa stew” or “Rabbit stew”; “salads” - all good You must try “Odessa stew or Rabbit stew”; salads - all good

Table 3: Prediction comparison between CMLA and RNCRF

S1 S2 S3
AS OP AS OP AS OP

Layer
1 84.90 81.85 77.28 78.12 69.27 69.56
2 85.29 83.18 77.80 80.17 70.73 73.68
3 84.41 82.38 77.24 79.29 69.78 71.95

Setup
ASL 84.38 - 76.45 - 69.53 -

ASL+OPL 84.14 82.10 77.05 79.66 69.49 72.73
CMLA 85.29 83.18 77.80 80.17 70.73 73.68

Table 4: Comparisons under varying layers and setups.

still proves comparable and even superior than deep models
without linguistic features for aspect terms extraction shown
in Table 2. This shows that multi-layer attentions with ten-
sors is advantageous for exploiting interactions. ASL+OPL
in Table 4 trains the aspect attention and opinion attention
independently using (1) where each attention predicts one of
the three labels. The results of ASL+OPL in terms of aspect
extraction are similar to ASL, which shows that the addi-
tional opinion labels have little effect on aspect extraction if
they are not interactively trained. By coupling the aspect and
opinion attentions, CMLA achieves the best performance.

As a core component, an attention computes a score for
each token to indicate its correlation with the correspond-
ing prototype. We visualize the actual attention scores for
the tokens of 4 sentences in Figure 3. The y-axis repre-
sents the scores before normalization which can be positive
or negative, but only the magnitude matters. Higher scores
mean larger correlations with the aspect/opinion prototype.
As the aspect and opinion attention have different sets of
parameters, the scores can correspond to different ranges of
the values. Tokens in purple (blue) are the ground-truth as-
pect (opinion) terms. Obviously, purple tokens correspond to
large scores for aspect extraction (purple bars with large val-
ues), and blue tokens correspond to large scores for opinion
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Figure 4: Sensitivity studies for data S1.

extraction (blue bars with large values). All the other non-
relevant terms have lower scores. This shows that our model
is able to extract terms of interest.

As mentioned previously, CMLA is able to extract target
terms without any dependency parser, and hence does not
depend on the quality of the parsing results. To show that,
we pick a few example reviews from the test datasets as pre-
sented in Table 3. The left and right column show the predic-
tion results from the proposed model and RNCRF (Wang et
al. 2016), respectively, where predicted opinions are made
italic, and aspects are “quoted”. Obviously, the listed re-
views are not formal enough to be parsed correctly. Hence,
RNCRF fails to extract some of the targets, unlike CMLA
which identifies all possible target terms.

To show the robustness of CMLA, we provide two sensi-
tivity studies on word embedding dimensions and the num-
ber of different interactions within a 3-dimensional tensor
on S1 in Figure 4. From the plot, we can see that the per-
formances for both aspect and opinion terms extraction are
relatively stable when varying word embedding dimensions,
with the highest scores achieved at 200. For the number of
tensor interactions, the model attains the best performance
at 20 for aspect extraction and 10 for opinion extraction.



Conclusion
We present a novel end-to-end network with coupled multi-
layer attentions, CMLA, for aspect-opinion co-extraction,
which does not require any parsers or linguistic resources.
Different from traditional attention network, we propose
coupled attentions to exploit the correlations among in-
put tokens, especially between aspect and opinion terms,
through tensor operators. Moreover, the multi-layer struc-
ture helps to extract non-obvious targets with indirect rela-
tions. Experimental results on 3 benchmark datasets verify
the effectiveness of CMLA.
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